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junction instead of the ideal one. At large direct magnetic fields it is
possible to observe resonance loss for one of the split modes.

The split frequencies are also related to the loaded Q-factor by
(1). This allows the loaded Q-factor to be determined.

VI. SusCEPTANCE SLOPE PARAMETER OF PARTIALLY
MAGNETIZED JUNCTION

One way in which the susceptance slope parameter of a partially
magnetized junction may be obtained is by using the universal ad-
mittance equation of a junction given by (2).

The susceptance slope parameter is immediately obtained from
this last equation by independently measuring the input admittance
and the two split frequencies. Methods of measuring these last two
quantities have already been described in the text.

It is also observed from this last equation that g is an increasing
function of the magnetic field as long as the splitting of the resonant
modes is widening,

VII. EXPERIMENTAL RESULTS

This seetion gives experimental results obtained on a below-
resonance stripline circulator using the techniques developed here.
The schematic of the stripline circulator investigated is shown in
Fig. 4. The junction used here consists of a garnet disk surrounded
by a dielectric sleeve. The magnetization of the garnet material used
was 0.0500 Wb/m? and its dielectric constant was ¢ =14.7. The
dielectric constant of the ring was ¢, =8.0. The diameter of the garnet
disk was 12.5 mm and the outside diameter of the ring was 25.0 mm.
The thickness of the garnet disk was 2.54 mm. The experimental re-
sults obtained here are shown in Figs. 5-7. Fig. 5 shows the gyrator
conductance of this junction as a function of the direct magnetic
field using the method developed in Section III of this text. Fig. 6
shows the two split frequencies of this geometry obtained by using
the technique derived in Section V. Finally, Fig. 7 gives the sus-
ceptance slope parameter of this junction as a function of the direct
magnetic field. This last illustration is obtained by solving the uni-
versal gyrator equation for the susceptance slope parameter in terms
of the experimental gyrator conductance and split frequencies of the
magnetized junction. Fig. 7 also indicates that the susceptance slope
parameter of the junction is independent of the direct magnetic field
which is as it should be for the dielectric loaded junction used here.

VIII. ConcLUsIONS

This short paper has given new simple ways of measuring each
of the three parameters which enter into the admittance equation of
junction circulators. The methods described require no phase in-
formation and are therefore ideally suited for reflectometer-type
measurements. All measurements described in this short paper are
made in the input transmission line of the junction with the other
two ports connected to similar transmission lines terminated in
their characteristic impedance. The results obtained here apply to
lossless circulators for which the two resonant modes are symmetri-
cally split by the magnetic field, and for which the frequency varia-
tion of the third mode can be omitted.
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End Effects of Half-Wave Stripline Resonators
ROLF 0. E. LAGERLOF

Abstract—The end effects of an open-circuited TEM transmis-
sion line make the line electrically longer than its physical length.
In this short paper a half-wave resonator of a balanced strip transmis-
sion line has been analyzed and the required foreshortening of the
line to achieve a prescribed resonance frequency has been calculated.
Also the decrease in the characteristic impedance of the stripline
caused by the end effects has been determined. The theory is in
reasonably good agreement with measurements performed, espe~
cially for narrow stripline resonators.

By using an electrostatic theory Altschuler and Oliner [1] calcu-
lated the foreshortening for a strip of infinite width. When the
physical length ¢ of the strip exceeds twice the ground-plane spacing
b, the foreshortening obtained this way is

Aa = 0.44b. 1

It is natural that the foreshortening is less for a narrow strip, Alt-
schuler and Oliner also gave an empiric formula for the width de-
pendence.

In this short paper a new dynamic method for the calculations of
the foreshortening of half-wave stripline resonators will be presented.
The method is based on calculations of cavity-backed slot antennas
[2], [3]. Fig. 1 shows a cavity for such an antenna. The usual electric
wall at the cavity bottom has been changed to a magnetic wall. For
a cavity-backed slot antenna an admittance can be defined at the
center of the slot. This admittance consists of two parts: one from
the exterior region of the cavity and one from the interior region in
the cavity. Here we are only interested in the latter part. If we put
an identical cavity on the other side of the slot, the slot admittance
will be twice the interior admittance of one cavity. On the other
hand, the dual configuration of the double cavity-backed slot is just
the stripline configuration of Fig. 2. Consequently, by using Babinet’s
principle we can achieve the input impedance Zsip over the infinites-
imal gap in the middle of the stripline resonator, as indicated in Fig.
2, from the interior admittance Vo4 of a single cavity

Zstrip = ’1' 2 Ynlot"u_o“ (2)

4 €r€a

where ¢ is the relative dielectric constant of the medium in the
cavity, i.e., of the stripline board. Since the medium in the closed
box is homogeneous, the field distribution is independent of ¢ and
so also of the foreshortening, But the impedances and resonance
frequencies are of course dependent on e.. If the magnetic walls in
Fig. 2 are moved away from the strip, their influence on the impe-
dance may be neglected.

To get the interior admittance Vi, we use a method [4]-[6]
where the different waveguide modes in the cavity build up a pro-
posed electrical field in the slot. At resonance a very good approxima-
tion for this field distribution over the slot is

A ¥
E(x, v,0) = XE cos (7r ;) . 3)
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Fig. 1. A modified cavity for a cavity-backed slot antenna.
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Fig. 2. The half-wave stripline resonator. Electric wall.
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The transversed field variation is here neglected but will be ac-
counted for later on. The electric-field component along the slot is
also neglected. This is an adequate approximation for narrow slots
in relation to their lengths.

After lengthy but straightforward manipulations, including a
Fourier series expansion of the slot field, the interior admittance is
obtained. Since the cavity is assumed to be lossless, the admittance
is a pure susceptance
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where ¢,=1 when #=0 and ¢,=2 when 7 0, and the propagating
constants are
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The general #n-dependent term is
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By increasing # this term will approach
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The original sum over # will now be replaced by

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, MAY 1973

ZTmn= m0+Z(Tmn_Tmn)+ZTmn-

n=0 f=l

(1

The first sum to the right of the equality sign converges rapidly and
the second is given by [7]
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These formulas have been obtained on the assumption that the E-
field over the slot is constant in the x direction. In the stripline case
the E-field over the slot corresponds to the H-field over the strip or,
except only for a constant, the current distribution in the strip. Thus
a constant E-field is adequate for a shallow cavity or a low-ohmic
stripline, since the current distribution in the center conductor of a
stripline is

sinh ad :]
I(x) = I(0) —— 2 b

/‘/cos.h2 (7—r 3) — cosh? (1r f)
2 b b

For a deep cavity or a high-ohmic stripline (12) should read [8]
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This has also been verified by comparing the characteristic impedance
of a stripline obtained with the theory of this short paper with the
characteristic impedance obtained with conformal mapping. It has
then been found that the following weighting between the two sums
gives the right characteristic impedance within 0.5 percent

0.588 ).s
Ed Q !

(14)
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The strip reactance may now be achieved from (2)
1
Xstrlp = aal leot- (17)
2 &€

A computer program has been carried out in which Xgwip and its
derivative with respect to the frequency w are determined. The
program calculates the resonance frequency, i.e., when Xguip =0. At
this frequency a theoretical TEM line without end effects should
have a length of half a guide wavelength. The foreshortening is
then obtained as the difference between this length and the actual
length a.

The impedance behavior of the foreshortened stripline near
resonance is similar to that of a theoretical TEM line with no end
effects having a characteristic impedance

dXs ri]
Zy = Zlsuie & (18)
do =«

The computer runnings show that this “apparent characteristic im-
pedance” of the foreshortened stripline is less than that obtained
from conformal mapping. That means that to get a proposed re-
sponse of a stripline system, the stubs and resonators should not only
be shortened but also narrowed. If the slot has the same length as
the cavity, there will be no end effects, and we should get the right
characteristic impedance of the stripline. Similarly, if the slot has the
same width as the cavity, we can simulate a strip of infinite width
and compute its foreshortening. But this has to be taken carefully,
since our assumption in (3) is good only for narrow strips.

In the diagram in Fig. 3 the foreshortening is plotted versus the
wavelength in the stripline for some widths of the strips. The fore-
shortening Ag, the stripline wavelength )\, and the width w are all
normalized with respect to the ground-plane spacing b. The magnetic
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Fig. 3. The foreshortening of a half-wave stripline resonator as a function of the

stripling wavelength for some values of the strip width., All dimensions are
normalized to the ground-plane spacing.

820/2,
010
Cy/b=25
Cq/b=50
008
006
004 rs
16
08
04
02
e
\
0
0 10 20 30 40 50
Ag/b

Tig. 4. The relative decrease in the characteristic impedance caused by the end
effects of half-wave stripline resonators as a function of the stripline wavelength
for some values of the strip width. All dimensions are normalized to the ground-
plane spacing.

walls have been moved away far enough so their influence on the re-
sults is restricted to the fourth or fifth digit. It is seen that the
dynamic foreshortening increases for decreasing resonator length in
contrary to the static theory, but is less than the static foreshortening
given by (1).

In the diagram in Fig. 4 the relative decrease in the characteristic
impedance caused by the end effects is plotted versus the stripline
wavelength for some widths of the strips.

The results may also be used for other open-ended stripline con-
figurations, such as N\/4 stubs, if one takes half the foreshortening in
Fig. 3 at every open end of the stripline.

Measurements of the foreshortenings are presented in Fig. 5 to-
gether with the corresponding theoretical curves. The foreshortenings
have been obtained by measuring the resonance frequencies of strip-
line resonators. Even if the foreshortening is independent of the rela-
tive dielectric constant of the board, the resonance frequency is
not. Thus, when we obtain the foreshortenings from the resonance
frequencies, the relative dielectric constant is critical. The manu-
facturer of the stripline board used states that ¢, =2.62 +0.05. The
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Fig. 5. Measured data points and theoretical curves of the foreshortening as a

function of the strip width (logarithmic scale) for some values of the strip length,
All dimensions are normalized to the ground-plane spacing.

points have been calculated by using the value 2.62. For narrow
strips the agreement is good between theory and practice, but for
broader strips the difference is greater. This may depend on the as-
sumption that the current on the strip is laminar all the way to its
ends. This is true for a narrow strip, but for a wider strip the current
bends to the center at the ends of the strip. This bending makes the
current path longer, which will contribute to the foreshortening.
Measurements on a slotted strip showed less foreshortening, con-
firming the current bending theory. Contributory reasons for the
difference between theory and practice are the uncertainty of e,
(2.65 had been more advantageous), the finite thickness of the strip,
and the air spacing between the boards caused thereby.
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Maximum Phase-Locking Bandwidth Obtainable by
Injection Locking

LENNART GUSTAFSSON, K. INGEMAR LUNDSTROM,
anp G. H. BERTIL HANSSON

Abstract—A simple rule is presented for the determination of the
locking region of an oscillator with a general tuning circuit.

During the last few years a number of articles have treated the
theoretical aspects of injection locking [1]-[6]. Reference is often
made to an early paper by Adler [7], whereas the basic work by Van
der Pol [8] is often neglected. Van der Pol made a thorough study
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